A Fault Detection Tool Using Analysis from an Autoregressive Model Pole Trajectory
نویسندگان
چکیده
A new scheme is proposed that combines Autoregressive (AR) modelling techniques and pole-related spectral decomposition for the study of incipient single-point bearing defects for a vibration based condition monitoring system. Vibration signals obtained from the ball bearings from the High Vacuum (HV) and Low Vacuum (LV) ends of a dry vacuum pump run in normal and faulty conditions are modelled as time-variant AR series. The appearance of spurious peaks in the frequency domain of the vibration signatures translates to the onset of defects in the rolling elements. As the extent of the defects worsens, the amplitudes of the characteristic defect frequencies’ spectral peaks increase. This can be seen as the AR poles moving closer to the unit circle as the severity of the defects increase. The number of poles equals the AR model order. Although not all of the poles are of interest to the user. It is only the poles that have angular frequencies close to the characteristic bearing defect frequencies that are termed the ‘critical poles’ and are tracked for quantification of the main spectral peaks. The time varying distance, power and frequency components can be monitored by tracking the movement of critical poles. To test the efficacy of the scheme, the proposed method was applied to increasing frame sizes of vibration data captured from a pump in the laboratory. It was found that a sample size of 4000 samples per frame was sufficient for almost perfect detection and classification when the AR poles’ distance from the centre of unit circle was used as the fault indicator. The power of the migratory poles was an alternative perfect classifier which can be used as a fault indicator. The analysis has been validated with actual data obtained from the pump. The proposed method has interesting potential applications in condition monitoring, diagnostic and prognostic-related systems.
منابع مشابه
An LPV Approach to Sensor Fault Diagnosis of Robotic Arm
One of the major challenges in robotic arms is to diagnosis sensor fault. To address this challenge, this paper presents an LPV approach. Initially, the dynamics of a two-link manipulator is modelled with a polytopic linear parameter varying structure and then by using a descriptor system approach and a robust design of a suitable unknown input observer by means of pole placement method along w...
متن کاملFault Detection in the Semiconductor Etch Process Using the Seasonal Autoregressive Integrated Moving Average Modeling
In this paper, we investigated the use of seasonal autoregressive integrated moving average (SARIMA) time series models for fault detection in semiconductor etch equipment data. The derivative dynamic time warping algorithm was employed for the synchronization of data. The models were generated using a set of data from healthy runs, and the established models were compared with the experimental...
متن کاملInternal Fault Detection, Location, and Classification in Stator Winding of the Synchronous Generators Based on the Terminal Voltage Waveform
In this paper, a novel method is presented for detection and classification of the faultyphase/region in the stator winding of synchronous generators on the basis of the resulting harmoniccomponents that appear in the terminal voltage waveforms. Analytical results obtained through DecisionTree (DT) show that the internal faults are not only detectable but also they can be classified andthe rela...
متن کاملAnalysis of Magnetic Flux Linkage Distribution in Salient-Pole Synchronous Generator with Different Kinds of Inter-Turn Winding Faults
A reliable and accurate diagnosis of inter-turn short circuit faults is a challenging problem in the area of fault diagnosis of electrical machines. The purpose of this challenge is to be more efficient in fault detection and to provide a reliable method with low-cost sensors and simple numerical algorithms which not only detect the occurrence of the fault, but also locate its position in the w...
متن کاملStator Turn-to-Turn Fault Detection of Induction Motor by Non-Invasive Method Using Generalized Regression Neural Network
Condition monitoring and protection methods based on the analysis of the machine's current are widely used according to non-invasive characteristics of current transformers. It should be noted that, these sensors are installed by default in the machine control center. On the other hand, condition monitoring based on mathematical methods has been proposed in literature. However, they are model b...
متن کامل